


Ответ: a) π/4 + πn, n ∈ Z, arctg(-2/3) + \pi k, k \in Z
b) 5π/4, arctg(-2/3) + π/2, arctg(-2/3) + 3π/2
1 \\ \\ ODZ: \ $\left\{ \begin{gathered} x > 0 \\ 1-9\log_{8}^{2}x \ge 0 \ (1) \\ \end{gathered} \right.$ \ " alt=" 2) \ \sqrt{1-9\log ^{2}_{8}x} - 4\log_{8}x > 1 \\ \\ ODZ: \ $\left\{ \begin{gathered} x > 0 \\ 1-9\log_{8}^{2}x \ge 0 \ (1) \\ \end{gathered} \right.$ \ " align="absmiddle" class="latex-formula">
![(1): \ 1 - 9\log_{8}^{2}x \ge 0 \\ \\ 9\log_{8}^{2}x \le 1 \\ \\ \log_{8}^{2}x \le \dfrac{1}{9} \\ \\ |\log_{8}x| \le \dfrac{1}{3} \\ \\ -\dfrac{1}{3} \le \log_{8}x \le \dfrac{1}{3} \\ \\ \log_{8}8^{-\frac{1}{3}} \le \log_{8}x \le \log_{8}8^{\frac{1}{3}} \\ \\ 8^{-\frac{1}{3}} \le x \le 8^{\frac{1}{3}} \\ \\ \dfrac{1}{2} \le x \le 2 \ ; \ x \in [\dfrac{1}{2};2] (1): \ 1 - 9\log_{8}^{2}x \ge 0 \\ \\ 9\log_{8}^{2}x \le 1 \\ \\ \log_{8}^{2}x \le \dfrac{1}{9} \\ \\ |\log_{8}x| \le \dfrac{1}{3} \\ \\ -\dfrac{1}{3} \le \log_{8}x \le \dfrac{1}{3} \\ \\ \log_{8}8^{-\frac{1}{3}} \le \log_{8}x \le \log_{8}8^{\frac{1}{3}} \\ \\ 8^{-\frac{1}{3}} \le x \le 8^{\frac{1}{3}} \\ \\ \dfrac{1}{2} \le x \le 2 \ ; \ x \in [\dfrac{1}{2};2]](https://tex.z-dn.net/?f=+%281%29%3A+%5C+1+-+9%5Clog_%7B8%7D%5E%7B2%7Dx+%5Cge+0+%5C%5C+%5C%5C+9%5Clog_%7B8%7D%5E%7B2%7Dx+%5Cle+1+%5C%5C+%5C%5C+%5Clog_%7B8%7D%5E%7B2%7Dx+%5Cle+%5Cdfrac%7B1%7D%7B9%7D+%5C%5C+%5C%5C+%7C%5Clog_%7B8%7Dx%7C+%5Cle+%5Cdfrac%7B1%7D%7B3%7D+%5C%5C+%5C%5C+-%5Cdfrac%7B1%7D%7B3%7D+%5Cle+%5Clog_%7B8%7Dx+%5Cle+%5Cdfrac%7B1%7D%7B3%7D+%5C%5C+%5C%5C+%5Clog_%7B8%7D8%5E%7B-%5Cfrac%7B1%7D%7B3%7D%7D+%5Cle+%5Clog_%7B8%7Dx+%5Cle+%5Clog_%7B8%7D8%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D+%5C%5C+%5C%5C+8%5E%7B-%5Cfrac%7B1%7D%7B3%7D%7D+%5Cle+x+%5Cle+8%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D+%5C%5C+%5C%5C+%5Cdfrac%7B1%7D%7B2%7D+%5Cle+x+%5Cle+2+%5C+%3B+%5C+x+%5Cin+%5B%5Cdfrac%7B1%7D%7B2%7D%3B2%5D+++)
![x \in [\dfrac{1}{2} ;2] x \in [\dfrac{1}{2} ;2]](https://tex.z-dn.net/?f=+x+%5Cin+%5B%5Cdfrac%7B1%7D%7B2%7D+%3B2%5D+)
Решим уравнение:
1 + 4\log_{8}x \\ \\ \sqrt{1-9\log_{2^{3}}^{2}x} > 1 + 4\log_{2^{3}}x \\ \\ \sqrt{1 -\log_{2}^{2}x} > 1 + \dfrac{4}{3}\log_{2}x \\ \\ (\sqrt{1 -\log_{2}^{2}x})^{2} > (1 + \dfrac{4}{3}\log_{2}x)^{2} " alt=" \sqrt{1-9\log ^{2}_{8}x} > 1 + 4\log_{8}x \\ \\ \sqrt{1-9\log_{2^{3}}^{2}x} > 1 + 4\log_{2^{3}}x \\ \\ \sqrt{1 -\log_{2}^{2}x} > 1 + \dfrac{4}{3}\log_{2}x \\ \\ (\sqrt{1 -\log_{2}^{2}x})^{2} > (1 + \dfrac{4}{3}\log_{2}x)^{2} " align="absmiddle" class="latex-formula">
ИЛИ

1 + \dfrac{8}{3}\log_{2}x + \dfrac{16}{9}\log_{2}^{2}x \\ \\ \log_{2}x = t \\ \\ 1 - t^{2} > 1 + \dfrac{8t}{3} + \dfrac{16t^{2}}{9} \\ \\ 9 - 9t^{2} > 9 + 24t + 16t^{2} \\ \\ -25t^{2} - 24t > 0 \\ \\ -t(25t + 24) > 0\\ $\left\{ \begin{gathered} t \ \textless \ 0 \\ t \ \textgreater \ -\dfrac{24}{25} \\ \end{gathered} \right.$" alt=" (2): \ 1 - \log_{2}^{2}x > 1 + \dfrac{8}{3}\log_{2}x + \dfrac{16}{9}\log_{2}^{2}x \\ \\ \log_{2}x = t \\ \\ 1 - t^{2} > 1 + \dfrac{8t}{3} + \dfrac{16t^{2}}{9} \\ \\ 9 - 9t^{2} > 9 + 24t + 16t^{2} \\ \\ -25t^{2} - 24t > 0 \\ \\ -t(25t + 24) > 0\\ $\left\{ \begin{gathered} t \ \textless \ 0 \\ t \ \textgreater \ -\dfrac{24}{25} \\ \end{gathered} \right.$" align="absmiddle" class="latex-formula">
![-\dfrac{24}{25} < \log_{2}x < 0 \\ \\ \log_{2}2^{-\frac{24}{25}} < \log_{2}x < \log_{2}2^{0} \\ \\ 2^{-\frac{24}{25}}< x < 1 \ ; \ x \in (\dfrac{1}{\sqrt[25]{2^{24}}}; 1) -\dfrac{24}{25} < \log_{2}x < 0 \\ \\ \log_{2}2^{-\frac{24}{25}} < \log_{2}x < \log_{2}2^{0} \\ \\ 2^{-\frac{24}{25}}< x < 1 \ ; \ x \in (\dfrac{1}{\sqrt[25]{2^{24}}}; 1)](https://tex.z-dn.net/?f=+-%5Cdfrac%7B24%7D%7B25%7D+%3C+%5Clog_%7B2%7Dx+%3C+0+%5C%5C+%5C%5C+%5Clog_%7B2%7D2%5E%7B-%5Cfrac%7B24%7D%7B25%7D%7D+%3C+%5Clog_%7B2%7Dx+%3C+%5Clog_%7B2%7D2%5E%7B0%7D+%5C%5C+%5C%5C+2%5E%7B-%5Cfrac%7B24%7D%7B25%7D%7D%3C+x+%3C+1+%5C+%3B+%5C+x+%5Cin+%28%5Cdfrac%7B1%7D%7B%5Csqrt%5B25%5D%7B2%5E%7B24%7D%7D%7D%3B+1%29++++++)
![(3): \ 1 + \dfrac{4}{3}\log_{2}x \ge 0 \\ \\ \log_{2}x \ge \log_{2}2^{-\frac{3}{4}} \\ \\ x \ge 2^{-\frac{3}{4}} \ ; \ x \in [\dfrac{1}{\sqrt[4]{2^{3}}}; +\infty) (3): \ 1 + \dfrac{4}{3}\log_{2}x \ge 0 \\ \\ \log_{2}x \ge \log_{2}2^{-\frac{3}{4}} \\ \\ x \ge 2^{-\frac{3}{4}} \ ; \ x \in [\dfrac{1}{\sqrt[4]{2^{3}}}; +\infty)](https://tex.z-dn.net/?f=+%283%29%3A+%5C+1+%2B+%5Cdfrac%7B4%7D%7B3%7D%5Clog_%7B2%7Dx+%5Cge+0+%5C%5C+%5C%5C+%5Clog_%7B2%7Dx+%5Cge+%5Clog_%7B2%7D2%5E%7B-%5Cfrac%7B3%7D%7B4%7D%7D+%5C%5C+%5C%5C+x+%5Cge+2%5E%7B-%5Cfrac%7B3%7D%7B4%7D%7D+%5C+%3B+%5C+x+%5Cin+%5B%5Cdfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B2%5E%7B3%7D%7D%7D%3B+%2B%5Cinfty%29++++)
Пересечём (2) и (3):
![x \in [\dfrac{1}{\sqrt[4]{2^{3}}};1) x \in [\dfrac{1}{\sqrt[4]{2^{3}}};1)](https://tex.z-dn.net/?f=+x+%5Cin+%5B%5Cdfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B2%5E%7B3%7D%7D%7D%3B1%29++++)
<img src="
https://tex.z-dn.net/?f=%283%29%3A+%5C+x+%5Cin+R+%5C%5C+%5C%5C+%284%29%3A+%5C+1+%2B++%5Cdfrac%7B4%7D%7B3%7D%5Clog_%7B2%7Dx+%5C+%5Ctextless+%5C++0+%5C%5C+%5C%5C+%5Clog_%7B2%7Dx+%5C+%5Ctextless+%5C++-+%5Cdfrac%7B3%7D%7B4%7D+%5C%5C+%5C%5C+x+%5C+%5Ctextless+%5C+++%5Cdfrac%7B1%7D%7B+%5Csqrt%5B4%5D%7B2%5E%7B3%7D%7D%7D+" id="TexFormula15" title="(3): \ x \in R \\ \\ (4): \ 1 + \dfrac{4}{3}\log_{2}x \ \textless \ 0 \\ \\ \log_{2}x \ \textless \ - \dfrac{3}{4} \\ \\ x \ \textless \ \dfrac{1}{ \sqrt[4]{2^{3}}} " alt="(