1)В параллелограмме ABCDиз вершин тупых углов Bи Dна диагональ ACопущены перпендикуляры...

0 голосов

1)В параллелограмме ABCDиз вершин тупых углов Bи Dна диагональ ACопущены перпендикуляры BEи DF. Докажите, что четырехугольник BEDF– параллелограмм.


спросил от Одаренный (1.2k баллов) в категории Геометрия
1 Ответ
0 голосов
ответил от Легенда (80.7k баллов)
 
Лучший ответ

BE║DF как перпендикуляры к одной прямой.

АВ = CD как противоположные стороны параллелограмма,
∠ВАС = ∠DCA как накрест лежащие при пересечении АВ║CD секущей АС,
∠АЕВ = ∠CFD = 90°, ⇒
ΔАЕВ = ΔCFD по гипотенузе и острому углу,
значит ВЕ = DF.

Если в четырехугольнике противоположные стороны равны и параллельны, то это параллелограмм. Значит,
BEDF - параллелограмм.

...